Discrepancy for randomized Riemann sums
نویسندگان
چکیده
منابع مشابه
Importance Sampling and Riemann Sums
The Monte Carlo method gives some estimators to evaluate the expectation E f h] based on samples from either the true density f or from some instrumental density. In this paper, we show that the Riemann sums can be coupled with the importance function. This approach produces a class of Monte Carlo estimators such that the variance is of order O(n ?2). The choice of an optimal estimator among th...
متن کامل4: Riemann Sums, Riemann Integrals, Fundamental Theorem of Calculus
Proposition 1.3. Let X be a subset of R, let x0 be a limit point of X, let f : X → R be a function, and let L be a real number. Then the following two statements are equivalent. • f is differentiable at x0 on X with derivative L. • For every ε > 0, there exists a δ = δ(ε) > 0 such that, if x ∈ X satisfies |x− x0| < δ, then |f(x)− [f(x0) + L(x− x0)]| ≤ ε |x− x0| . Corollary 1.4 (Mean Value Theor...
متن کاملDiscrepancy of Sums of Three Arithmetic Progressions
The set system of all arithmetic progressions on [n] is known to have a discrepancy of order n1/4. We investigate the discrepancy for the set system S3 n formed by all sums of three arithmetic progressions on [n] and show that the discrepancy of S3 n is bounded below by Ω(n1/2). Thus S3 n is one of the few explicit examples of systems with polynomially many sets and a discrepancy this high.
متن کاملDiscrepancy of Sums of two Arithmetic Progressions
Estimating the discrepancy of the hypergraph of all arithmetic progressions in the set [N ] = {1, 2, . . . , N} was one of the famous open problems in combinatorial discrepancy theory for a long time. An extension of this classical hypergraph is the hypergraph of sums of k (k ≥ 1 fixed) arithmetic progressions. The hyperedges of this hypergraph are of the form A1 + A2 + . . . + Ak in [N ], wher...
متن کاملProcessing Simulation Output by Riemann Sums
R esum e Lorsque l'on estime une int egrale par les m ethodes de Monte-Carlo, une alternative a l'estimateur standard (la moyenne des valeurs observ ees) est l'utilisation des sommes de Riemann. Cette m ethode a et e developp ee par Yakowitz et al (1977) dans le cadre de la distribution uniforme. Nous proposons une g en eralisation de cette approche et nous montrons que l'utilisation des sommes...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 2009
ISSN: 0002-9939
DOI: 10.1090/s0002-9939-09-09975-4