Discrepancy for randomized Riemann sums

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Importance Sampling and Riemann Sums

The Monte Carlo method gives some estimators to evaluate the expectation E f h] based on samples from either the true density f or from some instrumental density. In this paper, we show that the Riemann sums can be coupled with the importance function. This approach produces a class of Monte Carlo estimators such that the variance is of order O(n ?2). The choice of an optimal estimator among th...

متن کامل

4: Riemann Sums, Riemann Integrals, Fundamental Theorem of Calculus

Proposition 1.3. Let X be a subset of R, let x0 be a limit point of X, let f : X → R be a function, and let L be a real number. Then the following two statements are equivalent. • f is differentiable at x0 on X with derivative L. • For every ε > 0, there exists a δ = δ(ε) > 0 such that, if x ∈ X satisfies |x− x0| < δ, then |f(x)− [f(x0) + L(x− x0)]| ≤ ε |x− x0| . Corollary 1.4 (Mean Value Theor...

متن کامل

Discrepancy of Sums of Three Arithmetic Progressions

The set system of all arithmetic progressions on [n] is known to have a discrepancy of order n1/4. We investigate the discrepancy for the set system S3 n formed by all sums of three arithmetic progressions on [n] and show that the discrepancy of S3 n is bounded below by Ω(n1/2). Thus S3 n is one of the few explicit examples of systems with polynomially many sets and a discrepancy this high.

متن کامل

Discrepancy of Sums of two Arithmetic Progressions

Estimating the discrepancy of the hypergraph of all arithmetic progressions in the set [N ] = {1, 2, . . . , N} was one of the famous open problems in combinatorial discrepancy theory for a long time. An extension of this classical hypergraph is the hypergraph of sums of k (k ≥ 1 fixed) arithmetic progressions. The hyperedges of this hypergraph are of the form A1 + A2 + . . . + Ak in [N ], wher...

متن کامل

Processing Simulation Output by Riemann Sums

R esum e Lorsque l'on estime une int egrale par les m ethodes de Monte-Carlo, une alternative a l'estimateur standard (la moyenne des valeurs observ ees) est l'utilisation des sommes de Riemann. Cette m ethode a et e developp ee par Yakowitz et al (1977) dans le cadre de la distribution uniforme. Nous proposons une g en eralisation de cette approche et nous montrons que l'utilisation des sommes...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 2009

ISSN: 0002-9939

DOI: 10.1090/s0002-9939-09-09975-4